Bard College Catalogue

The Bard College Catalogue contains detailed descriptions of the College's undergraduate programs and courses, curriculum, admission and financial aid procedures, student activities and services, history, campus facilities, affiliated institutions including graduate programs, and faculty and administration.

*The download on this page requires Adobe Reader for viewing and printing.


Bard College Catalogue 2013-14

Bard College Catalogue 2013-14

Mathematics

http://math.bard.edu


Faculty

Gregory Landweber (director), Amir Barghi, James Belk, Maria Belk, Ethan Bloch, John Cullinan, Mark D. Halsey, Samuel K. Hsiao, Lauren Rose, Branden Stone, Csilla Szabo

Overview

The Mathematics Program has three main functions: to provide students in the program with the opportunity to study the primary areas of contemporary mathematics, to provide physical and social science majors with the necessary mathematical tools for work in their disciplines, and to introduce all students to serious and interesting mathematical ideas and their applications.

Requirements

The program requirements are flexible enough to allow a student to prepare for graduate study in mathematics, professional schools (such as medical or law), or employment in the public or private sector. Students in the program are expected to follow the standard divisional procedure for Moderation and to ­fulfill the collegewide distribution and First-Year Seminar: The Common Course requirements.


By the time of Moderation a student in the program should have taken (or be taking) these courses or their equivalents: Mathematics 141, Calculus I; Mathematics 142, Calculus II; Mathematics 213, Linear Algebra with Ordinary Differential Equations; and Mathematics 261, Proofs and Fundamentals. By graduation, a student must have completed: Mathematics 241, Vector Calculus; Mathematics 332, Abstract Algebra; Mathematics 361, Real Analysis; at least two other mathematics courses numbered 300 or above; a computer science course, preferably before beginning the Senior Project; and the Senior Project.

Recent Senior Projects in Mathematics

  • “Classification of Adinkra Graphs”
  • “Enumerating Faces of Zonohedra”
  • “Optimal Control of Cell-Cycle-Specific Chemotherapy: An Examination of the Effects of Necrosis”
  • “A Structure Theorem for Plesken Lie Algebras over Finite Fields”
  • “Voronoi Diagrams with Non-Linear Bisectors”

Mathematics and Politics
Mathematics 106
This course considers applications of mathematics to political science. Five major topics are covered: a model of escalatory behavior, game-theoretic models of international conflict, yes-no voting systems, political power, and social choice. The implications of each model presented, as well as the limitations of the model, are discussed. There is no mathematical prerequisite, but the course includes some algebraic computations and discussion of deductive proofs of the main results.

Topics in Geometrical Mathematics
Mathematics 107
Geometrical mathematics involves many topics other than traditional Euclidean geometry, including symmetry, groups, frieze and wallpaper patterns, graphs, surfaces, knots, and higher dimensions. Prerequisite: eligibility for Q courses.

Precalculus Mathematics
Mathematics 110
For students who intend to take calculus and need to acquire the necessary skills in algebra and trigonometry. The concept of function is stressed, with particular attention to linear, quadratic, general polynomial, trigonometric, exponential, and logarithmic functions. Graphing in the Cartesian plane and developing the trigonometric functions as circular functions are included. Prerequisites: eligibility for Q courses and satisfactory performance on the precalculus entrance exam.

Chance
Mathematics 119
The mathematical theory of probability is useful for quantifying the uncertainty in everyday life. This course introduces basic ideas in discrete probability and explores a wide range of practical applications such as evaluating medical diagnostic tests, courtroom evidence, and data from surveys. The course uses algebra as a problem-solving tool. Prerequisite: passing score on Part I of the Mathematics Diagnostic.

Communications (and Miscommunications) Using Math

Mathematics 122
This course introduces the math behind everyday communications, from mass media to cell phones. Topics covered include cryptography, as used in secure websites; and elements of sound and image analysis used in MP3 players and digital cameras. Prerequisite: Mathematics 110 or the equivalent.

Exploration in Number Theory
Mathematics 131
An overview of one of the oldest areas of mathematics that is designed for any student who wants a taste of mathematics outside the calculus sequence. Topics include number puzzles, prime numbers, congruences, quadratic reciprocity, sums of squares, Diophantine equations, cryptography, coding theory, and continued fractions. Prerequisite: Mathematics 110 or permission of the instructor.

Game Theory
Mathematics 135
Game theory is a mathematical approach to modeling situations of conflict, whether real or theoretical. Using algebra and some analytical geometry, students explore the mathematical foundations of game theory. At the same time, they encounter a wide range of applications of the theory of games. Topics include zero-sum games, nonzero-sum games, pure and mixed strategies, von Neumann’s minimax theorem, Nash equilibria, and cooperative games. Prerequisite: Mathematics 110 or permission of the instructor.

Calculus I
Mathematics 141
An introduction to the basic ideas of differentiation and integration of functions of one variable. Topics include limits, techniques of differentiation, definite integrals, the fundamental theorem of calculus, and applications. Prerequisite: Mathematics 110 or the equivalent.

Calculus II
Mathematics 142
This course, a continuation of Calculus I, reinforces the fundamental ideas of the derivative and the definite integral. Topics covered include L’Hôpital’s rule, integration techniques, improper integrals, volumes, arc length, sequences and series, power series, continuous random variables, and separable differential equations. Prerequisite: Mathematics 141 or the equivalent.

Calculus III
Mathematics 212
This course investigates differentiation and integration of multivariable functions. Topics covered include vectors, coordinate systems, vector-valued functions, partial derivatives, gradients, Lagrange multipliers, multiple integrals, change of variables, line integrals, Green’s theorem, and Stokes’s theorem. Prerequisites: Mathematics 141 and 142 or the equivalent.

Linear Algebra with Ordinary Differential Equations 
Mathematics 213
Topics in linear algebra include n-dimensional Euclidean space, vectors, matrices, systems of linear equations, determinants, eigenvalues and eigenvectors; topics in ordinary differential equations include graphical methods, separable differential equations, higher-order linear differential equations, systems of linear differential equations and applications. Prerequisites: Mathematics 142 or the equivalent.

Vector Calculus 
Mathematics 241
This course investigates differentiation and integration of vector-valued functions, and related topics in calculus. Topics covered include vector-valued functions, equations for lines and planes, gradients, the chain rule, change of variables for multiple integrals, line integrals, Greene’s theorem, Stokes’ theorem, divergence theorem, and power series. Prerequisite: Mathematics 213.

Proofs and Fundamentals
Mathematics 261
An introduction to the methodology of the mathematical proof. The logic of compound and quantified statements; mathematical induction; and basic set theory, including functions and cardinality, are covered. Topics from foundational mathematics are developed to provide students with an opportunity to apply proof techniques. Prerequisite: Mathematics 142 or permission of the instructor.

Problem Solving
Mathematics 299
The course focuses on solving difficult problems stated in terms of elementary combinatorics, geometry, algebra, and calculus. Each class combines a lecture describing the common tricks and techniques used in a particular field with a problem session in which students work together using those techniques to tackle some particularly challenging problems. Prerequisite: any 200-level mathematics course or permission of the instructor.

Numerical Analysis Lab
Mathematics 301
cross-listed: computer science
An introduction to mathematical computation. After reviewing Taylor series and introducing algorithms for finding the zeros of nonlinear functions, solving linear systems quickly, and approximating eigenvalues, the course is devoted to curve fitting by means of polynomial interpolation, splines, Bézier curves, and least squares. Other topics: matrix factorizations, the PageRank algorithm, sparse matrices, and vector processing. Corequisites: Mathematics 213 and any computer science course or basic programming experience.

Ordinary and Partial Differential Equations
Mathematics 311
The main focus is on first- and second-order differential equations; higher-order differential equations are also considered. Topics in ordinary differential equations include systems of equations, phase plane portraits of solutions, bifurcations, stability, and existence and uniqueness. Topics in partial differential equations include boundary conditions, and physical applications and classifications of elliptic, parabolic, and hyperbolic equations. Prerequisite: Mathematics 213.

Modeling Realizable Phenomena
Mathematics 314
Modeling plays a prominent role in nearly every aspect of human knowledge—conceptual, qualitative, statistical, analytic, numerical. This course explores a variety of modeling approaches and styles. Topics may include statistical modeling, time series, spatial modeling and kriging, modeling in terms of special complete sets, auto- and cross-correlation functions, Markov chains, differential equations, data assimilation, and combining data with models. Prerequisite: Mathematics 212.

Combinatorics
Mathematics 316
Combinatorial mathematics is the study of how to combine objects into finite arrangements. Topics covered in this course are chosen from enumeration and generating functions, graph theory, matching and optimization theory, combinatorial designs, ordered sets, and coding theory. Prerequisite: Mathematics 261 or permission of the instructor.

Graph Theory
Mathematics 317
Graph theory is a branch of mathematics that has applications in areas ranging from operations research to biology. Topics discussed include connectivity, trees, Hamiltonian and Eulerian paths and cycles; isomorphism and reconstructability; planarity, coloring, color-critical graphs, and the four-color theorem; intersection graphs and vertex and edge domination; matchings and network flows; matroids and their relationship with optimization; and random graphs. Prerequisite: Mathematics 261 or permission of the instructor.

Operations Research
Mathematics 322
The study of techniques for finding optimal solutions to complex decision-making problems. The course tries to answer questions such as how to schedule classes with a limited number of classrooms on campus, how to determine a diet that is both rich in nutrients and low in calories, or how to create an investment portfolio that meets investment needs. Techniques covered include linear programming, network flows, integer/combinatorial optimization, and nonlinear programming. Prerequisite: Mathematics 212.

Dynamical Systems

Mathematics 323
An introduction to the theory of discrete dynamical systems. Topics covered include iterated functions, bifurcations, chaos, fractals and fractal dimension, complex functions, Julia sets, and the Mandelbrot set. The class makes extensive use of computers to model the behavior of dynamical systems. Prerequisite: Mathematics 261 or permission of the instructor.

Fourier Analysis and Wavelets
Mathematics 324
Recently, signal processing has gone through a mathematical revolution. Traditionally, it was built on the Fourier transform, a tool used to express signals as superpositions of pure sinusoidal functions. While the Fourier transform is suited to understanding physical phenomena, such as waves, it lacks the flexibility to analyze more complicated functions. A new tool, the wavelet transform, has become the staple of many signal processing tasks. This course introduces the mathematical foundations of the Fourier and the wavelet transforms, with excursions into signal processing. Prerequisites: Mathematics 212 and 213.

Probability
Mathematics 328
A calculus-based introduction to probability, with an emphasis on computation and applications. Topics include continuous and discrete random variables, combinatorial methods, conditional probability, joint distributions, expectation, variance, covariance, laws of large numbers, and the central limit theorem. Students gain practical experience using mathematical software to run probability simulations. Prerequi­site: Mathematics 213.

Mathematical Statistics
Mathematics 329
This course is a calculus-based introduction to statistical theory and applications. Students explore the mathematical ideas underlying common statistical methods and gain experience in analyzing real data. Core topics include estimation, confidence intervals, hypothesis testing, and regression. Additional topics vary by instructor and may include bootstrapping or nonparametric methods. Statistical software is used extensively to perform simulations and data analyses. Prerequi­site: Mathematics 328.

Abstract Algebra
Mathematics 332
An introduction to modern abstract algebraic systems. The structures of groups, rings, and fields are studied, together with the homomorphisms of these objects. Topics include equivalence relations, finite groups, group actions, integral domains, polynomial rings, and finite fields. Prerequisite: Mathematics 261 or permission of the instructor.

Abstract Algebra II 
Mathematics 333
This course is a continuation of Mathematics 332. After a review of group theory, the course covers selected topics from ring, field, and module theory. The second half of the course includes applications to representation theory and/or Galois theory, as time permits. Prerequisite: Mathematics 332.

Advanced Linear Algebra
Mathematics 335
This course starts with a discussion of dual spaces, direct sums, quotients, tensor products, spaces of homomorphisms and endomorphisms, inner product spaces, and quadratic forms. It then moves on to multilinear algebra, discussing symmetric and exterior powers, before turning to the Jordan canonical form and related topics. Other more advanced topics may include Hilbert spaces, modules, algebras, and matrix Lie groups. Corequisite: Mathematics 332.

Coding Theory
Mathematics 340
The digital transmission of information is considered extremely reliable, although it suffers the same sorts of corruption and data loss that plague analog transmission. Digital reliability comes from sophisticated techniques that encode data so that errors can be easily detected and corrected. These error-correcting codes require surprisingly beautiful mathematics. This class introduces the basics of error-correcting codes, as well as the mathematics of data compression and encryption. Prerequisite: Mathematics 261 or Computer Science 145.

Point Set Topology
Mathematics 351
Topics addressed include topological spaces, metric spaces, compactness, connectedness, continuity, homomorphisms, separation criteria, and, possibly, the fundamental group. Prerequisite: Mathematics 361 or permission of the instructor.

Differential Geometry
Mathematics 352
This course uses methods from multivariable calculus to study the geometry of curves and surfaces in three dimensions. Topics include curvature and torsion of curves, geometry of surfaces, geodesics, spherical and hyperbolic geometry, minimal surfaces, Gaussian curvature, and the Gauss-Bonnet theorem. Prerequisites: Mathematics 212 and 261, or permission of the instructor.

Real Analysis
Mathematics 361
The fundamental ideas of analysis in one-dimensional Euclidean space are studied. Topics covered include the completeness of real numbers, sequences, Cauchy sequences, continuity, uniform continuity, the derivative, and the Riemann integral. As time permits, other topics may be considered, such as infinite series of functions or metric spaces. Prerequisite: Mathematics 261 or permission of the instructor.

Complex Analysis
Mathematics 362
This course covers the basic theory of functions of one complex variable. Topics include the geometry of complex numbers, holomorphic and harmonic functions, Cauchy’s theorem and its consequences, Taylor and Laurent series, singularities, residues, elliptic functions, and other topics as time permits. Prerequisite: Mathematics 361 or permission of the instructor.

Numerical Real Analysis
Mathematics 363
Some of the fundamental ideas of analysis in one-dimensional Euclidean space are studied from both theoretical and computational perspectives. Topics covered include the foundations of the real numbers, sequences, series, power series, the derivative, and the Riemann integral. A focus is on error estimates for numerical methods of approximating the roots, derivatives, and integrals of real analytic functions, making use of Taylor series and Taylor's theorem. Prerequisites: Mathematics 261 and one prior 300-level mathematics course, or permission of the instructor.

Computational Algebraic Geometry
Mathematics 384
This introduction to computational algebraic geometry and commutative algebra explores the idea of solving systems of polynomial equations by viewing the solutions to these systems as both algebraic and geometric objects. Students learn how these objects can be manipulated using the Groebner basis algorithm. The course includes a mixture of theory and computation and examines connections to other areas of mathematics and to computer science. Prerequisite: Mathematics 332.

Junior Seminar
Mathematics 399
This course is designed to help students prepare for a Senior Project in mathematics via a variety of hands-on activities related to reading, doing, and writing mathematics. There are 10 weekly meetings, each devoted to a different topic: reading a mathematics paper; searching the mathematics literature; using LaTeX for writing a Senior Project; using computer programs such as Sage and Mathematica; and expository mathematical writing. The seminar is graded pass/fail. Prerequisite: at least one 300-level mathematics course.

Mathematical Logic

Mathematics 405
Topics include first-order logic, completeness and compactness theorems, model theory, nonstandard analysis, decidability and undecidability, incompleteness, and Turing machines. Prerequisite: Mathematics 332.

Advanced Topics in Abstract Algebra
Mathematics 432
A continuation of Mathematics 332. The primary goal is to develop the Galois theory of fields. Students explore the theory of field extensions, including algebraic extensions, automorphisms of fields, splitting fields, and separable extensions. As time permits, students may develop some topics in advanced group theory. Prerequisites: Mathematics 332 or permission of the instructor.