Bard College Event Mailer

close this window

Complete the following form to e-mail a copy of this event to a friend.


The following event may be of interest to you:

Myelinating Glia Differentiation is Regulated by the Mechanical Properties of the Extracellular Matrix
Thursday, March 15, 2018

The mechanical properties of living tissues have a significant impact on cell differentiation but remain largely unexplored in the context of myelin formation and repair. In the peripheral nervous system (PNS), the extracellular matrix (ECM) incorporates a basal lamina significantly denser than the loosely organized central nervous system (CNS) matrix. Inhibition of non-muscle myosin II (NMII) enhances central but impairs peripheral myelination and NMII has been implicated in cellular responses to changes in the elasticity of the ECM. To directly evaluate whether mechanotransduction plays a role in glial cell differentiation, we cultured Schwann cells (SC) and oligodendrocytes (OL) on matrices of variable elastic modulus, mimicking either their native environment or conditions found in injured tissue. We found that a rigid, lesion-like matrix inhibited branching and differentiation of OL in NMII-dependent manner. By contrast, SC developed normally in both soft and stiffer matrices. Although SC differentiation was not significantly affected by changes in matrix stiffness alone, we found that expression of critical pro-myelinating transcription factors was potentiated on rigid matrices at high laminin concentration. These findings are relevant to the design of biomaterials to promote healing and regeneration in both CNS and PNS, via transplantation of glial progenitors or the implantation of tissue scaffolds 

Time: 12:00 pm
Location: Reem-Kayden Center Laszlo Z. Bito '60 Auditorium
Sponsor: Biology Program
Contact: Felicia Keesing.
Phone: 845-752-2331

If you would like to see more events please visit the following URL: