Skip to main content.
Bard
  • Bard
  • Academics sub-menuAcademics
    Bard College Commencement
    • Academics
      • Programs and Divisions
      • Structure of the Curriculum
      • Courses
      • Requirements
      • Discover Bard
      • Bard Abroad
      • Academic Calendar
      • Faculty
      • Libraries
      • College Catalogue
      • Dual-Degree Programs
      • Bard Conservatory of Music
      • Other Study Opportunities
      • Graduate Programs
      • Early Colleges
  • Admission sub-menuAdmission
    • Applying
      • Apply Now
      • Financial Aid
      • Tuition + Payment
    • Discover Bard
      • Campus Tours
      • Meet Our Students + Alumni/ae
      • For Families / Familias
    • Stay in Touch
      • Join Our Mailing List
      • Contact Us
  • Campus Life sub-menuCampus Life
    Bard Campus Life

    Make a home in Annandale.

    • Living on Campus
      • Housing + Dining
      • Campus Resources
      • Get Involved on Campus
      • Visiting + Transportation
      • Athletics + Recreation
      • New Students
  • Civic Engagement sub-menuCivic Engagement
    • Bard CCE The Center for Civic Engagement (CCE) at Bard College embodies the fundamental belief that education and civil society are inextricably linked.

      Take action.
      Make an impact.

      Get Involved
      • Campus + Community
      • In the Classroom
      • U.S. Network
      • International Network
      • About CCE
      • Resources
      • Support
  • Newsroom sub-menuNews + Events
    Upstreaming
    • News + Events
      • Newsroom
      • Events Calendar
      • Video Gallery
      • Press Releases
      • Office of Communications
      • COVID-19 Updates
    • Special Events
      • Commencement Weekend
      • Alumni/ae Reunion
      • Family + Alumni/ae Weekend
      • Fisher Center
      • Bard SummerScape
      • Bard Athletics
  • About Bard sub-menuAbout Bard

    A private college for the public good.

    Support Bard

    Legacy Challenge
    • About Bard College
      • Mission Statement
      • Bard History
      • Love of Learning
      • Visiting Bard
      • Employment
      • OSUN
      • Bard Abroad
      • The Bard Network
      • Montgomery Place Campus
      • Campus Tours
      • Diversity, Equity, and Inclusion
      • Sustainability
      • Title IX and Nondiscrimination
      • HEOA Disclosures
      • Institutional Support
      • Safety and Security
      • Inside Bard
      • Alumni/ae Network
      • Family Network
      • Support Bard
      • Legacy Challenge
  • COVID-19 Information
  • Give
  • Search

Catalogue

The Bard College Catalogue contains detailed descriptions of the College's undergraduate programs and courses, curriculum, admission and financial aid procedures, student activities and services, history, campus facilities, affiliated institutions including graduate programs, and faculty and administration.

Download Catalogue PDF

  • Mission
    • Mission
  • Acknowledging Bard's Origins
    • Acknowledging Bard's Origins
  • History of Bard
    • History of Bard
    • Bard College: A Selective Chronology
    • Presidents of Bard College*
  • Learning at Bard
    • Overview
    • The Five Pillars of the Bard Education
    • The Curriculum
    • Academic Programs and Concentrations
    • Academic Requirements and Regulations
    • Specialized Degree Programs
  • Admission
    • Admission to Bard
  • Academic Calendar
    • Academic Calendar
  • Division of the Arts
    • Division of the Arts Overview
    • Architecture
    • Art History and Visual Culture
    • Dance
    • Film and Electronic Arts
    • Music
    • Photography
    • Studio Arts
    • Theater and Performance
    • Interdisciplinary Arts Courses
  • Division of Languages and Literature
    • Languages and Literature Overview
    • Foreign Languages, Cultures, and Literatures
    • Literature
    • Written Arts
  • Division of Science, Mathematics, and Computing
    • Science, Mathematics, and Computing Overview
    • Biology
    • Chemistry and Biochemistry
    • Computer Science
    • Mathematics
    • Physics
    • Psychology
    • Additional Courses in the Sciences
  • Division of Social Studies
    • Social Studies Overview
    • Anthropology
    • Economics
    • Economics and Finance
    • Historical Studies
    • Interdisciplinary Study of Religions
    • Philosophy
    • Politics
    • Sociology
  • Interdivisional Programs and Concentrations
    • Interdivisional Overview
    • Africana Studies
    • American and Indigenous Studies
    • Asian Studies
    • Classical Studies
    • Environmental Studies
    • Experimental Humanities
    • French Studies
    • Gender and Sexuality Studies
    • German Studies
    • Global and International Studies
    • Global Public Health
    • Human Rights
    • Irish and Celtic Studies
    • Italian Studies
    • Jewish Studies
    • Latin American and Iberian Studies
    • Medieval Studies
    • Middle Eastern Studies
    • Mind, Brain, and Behavior
    • Russian and Eurasian Studies
    • Science, Technology, and Society
    • Spanish Studies
    • Theology
    • Victorian Studies
    • Multidisciplinary Studies
    • Interdisciplinary Curricular Initiatives
  • The Bard College Conservatory of Music
    • Conservatory of Music Undergraduate Program
    • Conservatory of Music Graduate Programs
    • Advanced Performance Studies Program
    • Postgraduate Collaborative Piano Fellowships
    • Creative Center for Film Music
    • US-China Music Institute
  • Bard Abroad
    • Bard Abroad
  • Additional Study Opportunities and Affiliated Institutes
    • Additional Study Opportunities Overview
    • Additional Study Opportunities
    • Professional Education
    • Affiliated Programs and Institutes
  • Civic Engagement
    • Civic Engagement Overview
    • Center for Civic Engagement
    • Student-Led Engagement
    • Classroom, Community, and Careers
    • Bard and the Local Community
    • Innovations in Science and Sustainability
    • Education Reform
    • International Partnerships
  • Open Society University Network
    • Overview
    • Bard-Based Initiatives
    • Open Society University Network Member Institutions
  • Campus Life and Facilities
    • Campus Overview
    • Student Life
    • Student Services and Resources
    • Residence Life
    • Campus Facilities
    • Safety and Security
    • Office of Title IX and Nondiscrimination (OTN)
  • Graduate Programs
    • Graduate Programs Overview
    • Bard Center for Environmental Policy
    • Bard College Conservatory of Music
    • Bard Graduate Center
    • Bard MBA in Sustainability
    • Center for Curatorial Studies
      (CCS Bard)
    • Levy Economics Institute Graduate Programs in Economic Theory and Policy
    • Longy School of Music of Bard College
    • MA in Global Studies 
    • MA in Human Rights and the Arts
    • Master of Arts in Teaching Program
    • Milton Avery Graduate School of the Arts
    • The Orchestra Now
  • Educational Outreach
    • Overview
    • Early College Programs
    • Bard Baccalaureate
    • Bard Microcolleges
    • Bard Prison Initiative
    • Bridge Program
    • Clemente Course in the Humanities
    • Institute for Writing and Thinking
    • Lifetime Learning Institute
    • Longy School of Music of Bard College
    • Return to College Program
    • Zora Neale Hurston Writing Fellowship
    • International Partnerships
  • Levy Economics Institute of Bard College
    • Levy Economics Institute of Bard College
  • The Bard Center
    • The Bard Center
    • Fellows of The Bard Center
    • Bard Fiction Prize
    • Distinguished Scientist Lecture Series
    • Institute for Writing and Thinking
    • Leon Levy Endowment Fund
    • Cultural Programs
  • Finances
    • Financial Aid
    • Application for Financial Aid
    • Financial Aid Sources
    • Fees, Payment, and Refunds
  • Scholarships, Awards, and Prizes
    • Scholarships
    • Awards
    • Prizes
  • Faculty
    • Bard College Faculty
    • Bard College Faculty Emeritus
    • Faculty of the Bard College Conservatory of Music
    • Faculty of the Graduate Programs
    • Faculty of the Affiliate Programs 
  • Honorary Degrees and Bard College Awards
    • Honorary Degrees
    • Bard College Awards
  • Boards and Administration of Bard College
    • Boards of Bard College
    • Administration
  • Bard College Contact Information
    • Bard College Contact Information
    • Key Websites
  • Bard Campus Map and Travel Directions
    • Map and Travel Directions

Bard College Catalogue 2022-23

Mathematics

math.bard.edu

Faculty

John Cullinan (director), Ethan Bloch, Charles Doran, Mark D. Halsey, Mary C. Krembs (MAT), Caitlin Leverson, Stefan M. Mendez-Diez, Daniel Newsome, Lauren Rose, Steven Simon, Japheth Wood

Overview

The Mathematics Program has three main functions: to provide students in the program with the opportunity to study the primary areas of contemporary mathematics, to provide physical and social science majors with the necessary mathematical tools for work in their disciplines, and to introduce all students to serious and interesting mathematical ideas and their applications. 

Requirements

The program requirements are flexible enough to allow a student to prepare for graduate study in mathematics, professional schools (such as medical or law), or employment in the public or private sector. Students are expected to follow the standard divisional procedure for Moderation and to fulfill the college-wide distribution and First-Year Seminar requirements.

By the time of Moderation a student in the program should have taken (or be taking) these courses or their equivalents: Mathematics 141, Calculus I; Mathematics 142, Calculus II; Mathematics 242, Elementary Linear Algebra, or Mathematics 255, Vector Calculus (or Physics 221, Mathematical Methods I); and Mathematics 261, Proofs and Fundamentals. By graduation, a student must also have completed: Mathematics 245, Intermediate Calculus (or Physics 221, Mathematical Methods I); Mathematics 332, Abstract Algebra; Mathematics 361, Real Analysis; at least two other math courses numbered 300 or above; a computer science course, preferably before beginning the Senior Project; and the Senior Project. 

Recent Senior Projects in Mathematics

  • “Gibbs Phenomenon for Jacobi Approximations” 
  • “A Mathematical Model of Salt Dispersal and Accumulation in Lake Clear” 
  • “Square Peg Problem in 2-Dimensional Lattice” 
  • “Using Markov Chain Monte Carlo Algorithms to Predict Gerrymandering”

Courses

The following descriptions represent a sampling of courses from the past four years.

Elementary Statistics
Mathematics 102
An introduction to core ideas in statistics that are needed to make sense of what is found in media outlets, online surveys, and scientific journals. Most concepts are introduced in a case-study fashion; statistical software is used to analyze data and facilitate classroom discussions. Primary goals are to foster statistical reasoning and assist in making informed conclusions about topics involving data. Prerequisite: passing score on Part I of the Mathematics Diagnostic.

Quadrivium: Mathematics and Metaphysics in the Premodern World
Mathematics 103
What does the “music of the spheres” sound like? What influence did astrology have on mathematics? Why does Newton’s rainbow have seven colors? These questions are addressed by the quadrivium, a term coined by the sixth-century philosopher Boethius for the mathematical program of the medieval university. This course explores how mathematics was seen as the structure of everything. Readings from Plato, Euclid, Boethius, Ptolemy, al Khwarizmi, Fibonacci, Oresme, Kepler, others. Prerequisite: passing score on Part I of the Mathematics Diagnostic.

Data and Decisions
Mathematics 104
This course examines applications of mathematics to a number of topics related to data and decision making. Topics are chosen from three relevant areas of mathematics: voting systems, networks, and statistics, all of which involve extracting information from various types of data. No particular mathematical preparation is needed beyond basic algebra and a willingness to explore new ideas, construct convincing arguments, and use a spreadsheet. Prerequisite: passing score on Part I of the Mathematics Diagnostic.

Time, Space, and Infinity
Mathematics 105
CROSS-LISTED: PHILOSOPHY
If time is composed of moments with zero duration, is change an illusion? Beginning with Zeno’s ancient paradoxes, fundamental problems on the nature of time and space—and related ones regarding infinity—have bedeviled thinkers throughout the contemporary period. This course provides a beginner-friendly tour of some of mathematics’ most profound discoveries (irrational numbers, limits, uncountability) and the concerns that arise in answering such intractable questions. Prerequisite: Passing score on Part I of the Mathematics Diagnostic.

Mathematics and Politics
Mathematics 106
This course considers applications of mathematics to political science. Five major topics are covered: a model of escalatory behavior, game-theoretic models of international conflict, yes-no voting systems, political power, and social choice. For each model presented, the implications of the model as well as its limitations are discussed. Students are actively involved in the modeling process. While there is no particular mathematical prerequisite, students do algebraic computations from time to time and discuss deductive proofs of some of the results.

Chance, Skill, and Uncertainty
Mathematics 107
Some of the most sought-after numbers are the probabilities of future events—their values underlie the profits of insurance companies and casinos, while incorrectly assessing them can contribute to medical misdiagnosis, wrongful incarceration, and financial crashes. This course touches on selected probability paradoxes and philosophical interpretations, along with physical theories of information, entropy, and quantum mechanics that illuminate the question of what probabilities signify. Prerequisite: passing score on Part I of the Mathematics Diagnostic.

Precalculus Mathematics
Mathematics 110
For students who intend to take calculus and need to acquire the necessary skills in algebra and trigonometry. The concept of function is stressed, with particular attention to linear, quadratic, general polynomial, trigonometric, exponential, and logarithmic functions. Graphing in the Cartesian plane and developing the trigonometric functions as circular functions are also addressed. Prerequisite: passing score on Part I of the Mathematics Diagnostic.

Mathematics of Puzzles and Games
Mathematics 116
DESIGNATED: ELAS COURSE
This course develops the mathematics of puzzles and games as a means to solve a puzzle or win a game, and also as a fun way to learn and develop mathematical skills. The focus is on the mathematics and strategies behind Rubik’s Cube, SET, Nim, Hex, and Sudoku. ELAS activities include guest presenters, a trip to the National Museum of Mathematics, and participation in game sessions for local K–12 students and community members. Prerequisite: passing score on Part I of the Mathematics Diagnostic.

Calculus I
Mathematics 141
The basic ideas of differentiation and integration of functions in one variable are discussed. Topics include limits, techniques of differentiation, definite integrals, the fundamental theorem of calculus, and applications. Prerequisite: Mathematics 110 or the equivalent.

Calculus II
Mathematics 142
This course reinforces the fundamental ideas of the derivative and definite integral. Topics include integration techniques, L’Hôpital’s rule, improper integrals, volumes, arc length, sequences and series, power series, continuous random variables, and separable differential equations. Prerequisite: Mathematics 141 or the equivalent.

Racial Disparities in Mathematics
Mathematics 199
DESIGNATED: ELAS+ COURSE
In light of the recent Black Lives Matter protests, this 2-credit, P/F course begins by exploring the anti-Black narratives that exist in math textbooks and departments throughout the United States. It ultimately hopes to develop skills and strategies to dismantle the existing biases as students proceed into STEM careers. Participants write chapters and lesson plans based on math topics of their choice that incorporate ideas of racial inequality and injustices. Prerequisite: Mathematics 141 or permission of the instructor.

Linear Algebra with Ordinary Differential Equations 
Mathematics 213
Topics include n-dimensional Euclidean space, vectors, matrices, systems of linear equations, determinants, eigenvalues and eigenvectors; topics in ordinary differential equations include graphical methods, separable differential equations, higher-order linear differential equations, systems of linear differential equations and applications. Prerequisite: Mathematics 142 or the equivalent.

Elementary Linear Algebra
Mathematics 242
The course covers the basics of linear algebra in n-dimensional Euclidean space, including vectors, matrices, systems of linear equations, determinants, and eigenvalues and eigenvectors, as well as applications of these concepts to the natural, physical, and social sciences. Prerequisite: Mathematics 142 or permission of the instructor.

Intermediate Calculus
Mathematics 245
A continuation of the study of calculus begun in Mathematics 141-142. Topics covered include double and triple integrals in curvilinear coordinates, sequences and series, power series, and an introduction to ordinary differential equations. Prerequisite: Mathematics 142 or permission of the instructor.

Vector Calculus 
Mathematics 255
This course investigates differentiation and integration of vector-valued functions and related topics in calculus. Topics covered include vector-valued functions, equations for lines and planes, gradients, the chain rule, change of variables for multiple integrals, line integrals, Green’s theorem, Stokes’s theorem, the divergence theorem, and power series. Prerequisite: Mathematics 213.

Proofs and Fundamentals
Mathematics 261
An introduction to the methodology of the mathematical proof. The logic of compound and quantified statements; mathematical induction; and basic set theory, including functions and cardinality, are covered. Topics from foundational mathematics are developed to provide students with an opportunity to apply proof techniques. Prerequisite: Mathematics 142 or permission of the instructor.

Scientific Computing
Mathematics 301
The course explores the theory of numerical computation, as well as how to utilize the theory to solve real problems using the computer software package MATLAB. Students learn how to use MATLAB by solving eigenvalue problems before moving on to curve fitting using least squares and polynomial interpolation, among other numerical methods for solving differential equations. Prerequisites: Mathematics 213 and 241, and either Computer Science 143 or Physics 221.

Advanced Calculus
Mathematics 312
This course treats the differential and integral calculus of several variables from an advanced perspective. Topics may include the derivative as a linear transformation, change of variables for multiple integrals, parametrizations of curves and surfaces, line and surface integrals, Green’s theorem, Stokes’s theorem, the divergence theorem, manifolds, tensors, differential forms, and applications to probability and the physical sciences. Prerequisite: Mathematics 241 or Physics 222, or permission of the instructor.

Discrete and Computational Geometry
Mathematics 313
Discrete and computational geometry, which has applications in areas such as pattern recognition, image processing, computer graphics, and terrain modeling, is the study of geometric constructs in two- and three-dimensional space that arise from finite sets of points. Topics covered include convex hull, Delaunay triangulations, Voronoi diagrams, curve reconstruction, and polyhedra. Work involves both traditional proofs and implementation of algorithms via the computer system Sage, which is based upon Python. Prerequisites: Mathematics 261 or Computer Science 145, and some programming experience.

Game Theory
Mathematics 315
Game theory, a mathematical approach to modeling situations of conflict and cooperation, has applications to many fields, including economics, biology, and psychology. This course introduces game theory from a mathematical perspective; topics include mathematical models of games, two-person games, mixed strategies, and Nash equilibria. Additional topics may include continuous games, dynamic games, and stochastic games. Prerequisites: Mathematics 213 and 261.

Graph Theory
Mathematics 317
Graph theory is a branch of mathematics that has applications in areas ranging from operations research to biology. Topics discussed include connectivity, trees, Hamiltonian and Eulerian paths and cycles; isomorphism and reconstructability; planarity, coloring, color-critical graphs, and the four-color theorem; intersection graphs and vertex and edge domination; matchings and network flows; matroids and their relationship with optimization; and random graphs. Prerequisite: Mathematics 261 or permission of the instructor.

Number Theory
Mathematics 318
This proofs-based introduction to the theory of numbers covers the fundamentals of quadratic number fields. Topics include factorization, class group, unit group, Diophantine approximation, zeta functions, and applications to cryptography. Prerequisite: Mathematics 261.

Differential Equations
Mathematics 321
An introduction to the theory of partial differential equations, with a focus on the derivation and solutions of the main examples in the subject rather than on the existence and uniqueness theorems and higher analysis. Topics include hyperbolic and elliptic equations in several variables, Dirichlet problems, the Fourier and Laplace transform, Green’s functions, and numerical and approximation methods. Prerequisite: Mathematics 245 or permission of the instructor.

Operations Research
Mathematics 322
Operations research is the study of techniques for finding optimal solutions to complex decision-making problems. It tries to answer questions such as how to schedule classes with a limited number of classrooms on campus, how to determine a diet that is both rich in nutrients and low in calories, or how to create an investment portfolio that meets investment needs. Techniques covered include linear programming, network flows, integer/combinatorial optimization, and nonlinear programming. Prerequisite: a course in linear algebra or permission of the instructor. 

Dynamical Systems
Mathematics 323
An introduction to the theory of discrete dynamical systems. Topics covered include iterated functions, bifurcations, chaos, fractals and fractal dimension, complex functions, Julia sets, and the Mandelbrot set. The class makes extensive use of computers to model the behavior of dynamical systems. Prerequisite: Mathematics 261 or permission of the instructor.

Geometry
Mathematics 325
This course samples topics from the geometry of the plane, with a primary emphasis on the synthetic approach to Euclidean geometry. Other approaches (e.g., vector methods) and types of geometry (hyperbolic or projective geometry) are also considered, time permitting. Core topics in Euclidean geometry include axioms, metrics, congruence, similarity, polygons, triangles, and circle. Prerequisites: Mathematics 213 and 261, or permission of the instructor.

Probability
Mathematics 328
A calculus-based introduction to probability, with an emphasis on computation and applications. Topics include continuous and discrete random variables, combinatorial methods, ­conditional probability, joint distributions, expectation, variance, covariance, laws of large numbers, and the central limit theorem. Students gain practical experience using mathematical software to run probability simulations. Prerequisite: Mathematics 261 or permission of the instructor.

Mathematical Statistics
Mathematics 329
This course is a calculus-based introduction to statistical theory and applications. Students explore the mathematical ideas underlying common statistical methods and gain experience in analyzing real data. Core topics include estimation, confidence intervals, hypothesis testing, and regression. Additional topics vary by instructor and may include bootstrapping or nonparametric methods. Statistical software is used extensively to perform simulations and data analyses. Prerequisite: Mathematics 328.

Abstract Linear Algebra 
Mathematics 331
The main focus of this course is the study of vector spaces and linear maps between vector spaces. Topics covered also include linear independence, bases, dimension, linear maps, isomorphisms, matrix representations of linear maps, determinants, eigenvalues, inner product spaces, and diagonalizability. Prerequisite: Mathematics 261 or permission of the instructor.

Abstract Algebra
Mathematics 332
An introduction to modern abstract algebraic systems, including groups, rings, fields, and vector spaces. The course focuses primarily on a rigorous treatment of the basic theory of groups (subgroups, quotient groups, homomorphisms, isomorphisms, group actions) and vector spaces (subspaces, bases, dimension, linear maps). Prerequisites: Mathematics 213 and 261, or permission of the instructor.

Point-Set Topology
Mathematics 351
Topics addressed include topological spaces, metric spaces, compactness, connectedness, continuity, homomorphisms, separation criteria, an introduction to knots, and, possibly, the fundamental group. Prerequisite: Mathematics 261 or permission of the instructor; one prior 300-level Mathematics course is recommended.

Differential Geometry
Mathematics 352
This course uses methods from multivariable calculus to study the geometry of curves and surfaces in three dimensions. Topics covered include curvature and torsion of curves, geometry of surfaces, geodesics, spherical and hyperbolic geometry, minimal surfaces, Gaussian curvature, and the Gauss-Bonnet theorem. Time permitting, applications to subjects such as cartography and navigation, shapes of soap bubbles, computer graphics, image processing, and general relativity are also discussed. Prerequisite: Mathematics 241.

Real Analysis
Mathematics 361
The class studies the fundamental ideas of analysis in one-dimensional Euclidean space. Topics covered include the completeness of real numbers, sequences, Cauchy sequences, continuity, uniform continuity, the derivative, and the Riemann integral. As time permits, other topics may be considered, such as infinite series of functions or metric spaces. Prerequisite: Mathematics 261 or permission of the instructor.

Complex Analysis
Mathematics 362
This course covers the basic theory of functions of one complex variable. Topics include the geometry of complex numbers, holomorphic and harmonic functions, Cauchy’s theorem and its consequences, Taylor and Laurent series, singularities, residues, elliptic functions, and other topics as time permits. Prerequisite: Mathematics 361 or permission of the instructor.

Galois Theory
Mathematics 430
The goal of this course is to develop the Galois theory of fields, a theory that connects groups, rings, fields, and vector spaces in the study of roots of polynomials. Toward that end, the class develops the theory of field extensions, including algebraic extensions, automorphisms of fields, splitting fields, and separable extensions, with some surprising applications. Prerequisite: Mathematics 332.


 
 

 

Bard College
30 Campus Road
PO Box 5000
Annandale-on-Hudson, New York 12504-5000
Phone: 845-758-6822
Admission E-mail: [email protected]
©2023 Bard College
Follow Us on Twitter
Like us on Facebook
Follow Us on Instagram
You Tube
Information For:
Prospective Students
Current Employees
Alumni/ae 
Families
Quick Links
Employment
Travel to Bard
Site Search
Support Bard